
Software Engineering: TMA 02 | C6122243

Software Engineering:

TMA 02

MATTHEW MASON
C6122243

Matthew Mason| C6122243

Contents
Question 1 ... 3

a... 3

b. ... 3

c. .. 4

d. ... 5

e. ... 7

Question 2 ... 8

a... 8

b. ... 8

i. ... 8

ii. .. 8

iii. ... 8

iv. ... 8

c. .. 8

d. ... 8

e. ... 9

Question 3 ... 10

a... 10

i. ... 10

ii. .. 10

iii. ... 10

iv. ... 11

b. ... 11

Question 4 ... 12

a... 12

b .. 12

i. ... 12

ii. .. 12

Question 5 ... 13

a... 13

i. ... 13

ii. .. 13

iii. ... 13

iv. ... 13

b. ... 14

Matthew Mason| C6122243

Matthew Mason| C6122243

Question 1

a.

Candidate class name Keep (yes/no)? Reasons for keeping or discarding candidate class

Password, E-mail
Address, Name, Payment
details, Card Details

No Attribute of advertiser or attendee

Advertise Event No An event is created by the advertiser so this could
be an association

Advertiser Yes A person is required to be a registered user

Attendee Yes Details need to be kept for those attending an
event and to confirm tickets match

Browse Event, Cancel
Event, Check History, E-
mail Ticket, pay within 5
days, Refund, Add
Payment Method,
Change payment method

No Behaviour of the system

Category of Event, End
Time, Free to Attend,
Location, Max Number of
Attendees, Paid Event,
Start Time, Text
description of event,
Ticket price, Title of
event, date

No Attribute of event

Commission, Software
System, Website

No Outside scope of iteration

Event Yes Abstract entity

Ticket Yes Has a lifespan

b.
Having only the software description available means it’s difficult to get a sufficient understanding of

the problem and doesn’t provide enough information to discern a detailed representation of the

problem domain for the first iteration. If use cases or user stories existed then it might be possible to

identify additional classes, associations and attributes. Additional artefacts would also help

determine and identify the lifespan of objects through sequence diagrams and the potential

discovery of problems that require the model to be altered. The description of the problem doesn’t

specify how payment to advertisers is managed, for example, is it part of a separate system or does

the new system need to handle it? and not having a domain expert to talk to means assumptions

have to be made about things. This also means that certain words or phrases can’t be defined and

clarified as these might have specific meanings within the domain being modelled. However, for the

purpose of the BillyDoo Software System, conducting a grammatical parse of the problem allowed

me to establish a list of possible classes and their attributes and asking myself questions such as

‘would this element have a lifespan?’ along with modelling object diagrams, I was able to create a

very basic model of the domain.

(211 words)

Matthew Mason| C6122243

c.

Figure 1: My initial class model

Matthew Mason| C6122243

d.

Figure 2: My comment to Daniel Prendergast

Matthew Mason| C6122243

Figure 3: My comment to Alec Keen

Matthew Mason| C6122243

e.

Figure 4: My updated class model

Matthew Mason| C6122243

Question 2

a.
An alternative representation would be to replace the type attribute in the session class with three

separate classes to represent sessions for mothers and babies, children and autistic children. The

advantage of this is that attributes could be added during a later iteration determining what defines

each type, for example, a child could be defined as being between a lower and upper age limit

however a domain expert would need to be consulted to determine this. The disadvantage is that it

complicates the diagram. Each class would need to convey what type of session it is in the class

name which needs to be unique for each one and this name could end up being long or not clearly

representing what the class does. It also creates more links between classes which need to be

considered along with their multiplicities. Making each type a class also makes assumptions about

the meaning and in turn the diagram could be interpreted incorrectly. Finally, as it’s not a tangible

object and nothing needs to be recorded about it during this iteration, it would be better to have

type as an attribute of session.

b.

i.
context FilmForYou

self.member.ticket.s2.type

ii.
context FilmForYou

self.m1.ticket.session.film.title

iii.
context FilmForYou

self.s2.film.title

iv.
context FilmForYou

self.session -> select(s|s.date = “d1” and s.time = “t1”).film.title

c.
For the set of sessions, the capacity of the room the session takes place in must be equal to or

greater than the number of tickets associated with the session.

d.
To represent the need for members to be able to leave feedback about sessions and films we can

add an additional class to the diagram with the name ‘Feedback’. We would add this as a class

because information needs to be recorded about either the session, the film or both and will need to

be reviewed at some point. The Feedback class would link to the class Film with a multiplicity of 0..1

at the Film end, and 0…* at the Feedback end. It would also link to the Session class with a

multiplicity of 0…1 at the Session end and 0…* at the Feedback end. The final link would be between

Feedback and Member classes with the multiplicity of 0…1 at the Member end and 0…* at the

Feedback end. This configuration allows members to leave feedback about the session or film while

choosing to remain anonymous if they so choose. The class model below shows this new

configuration.

Matthew Mason| C6122243

Figure 5: Class diagram including Feedback class

 The diagram below shows an object model depicting a snapshot of the domain where multiple users

are leaving feedback for different sessions.

Figure 6: Object diagram of the Feedback Class

e.
An additional class could be added, for example ‘PurchaserInfo’, that links to both the Ticket and

Member classes with attributes for any relevant information required. If a customer doesn’t wish to

opt in, then no instance of the class is created however if they are happy for their details to be

recorded an instance of the class is created and linked to the specific member. If the are not a

member then there is no link between the new class and the Member class.

Matthew Mason| C6122243

Question 3

a.

i.
pre-conditions:

• Session is not in the past and is linked to a room and film

• Tickets number must be less than room.capacity

• Member must be active and dateRenewal is not in the past

Post-conditions:

• Member will be linked to ticket

• Ticket will be linked to session

ii.

Figure 7: A fork sequence diagram of the use case – memberBuysTicket

Figure 8: A cascade sequence diagram of the use case - memberBuysTicket

iii.
Neither of the two diagrams violate the Law of Demeter. In the diagram in figure 7, even though the

FilmForYou class doesn’t have a direct link to the Ticket class, a new instance of this class will need

to be created and the Law states that a method can send an object a message is an object has been

created as part of that method. In figure 8, although messages are sent to objects who are not

Matthew Mason| C6122243

parameters of the current method, each object has a direct link to the next object in the sequence

so there is no violation.

iv.
The sequence diagram in figure 7 shows that there is a low degree of coupling between classes

however it means that the main responsibility of functionality is handled by the system class

“FilmForYou” due to the sequence diagram being designed in a fork pattern. Because of this design,

applying the GRASP creator pattern would lead to the system class also being responsible for

creating instances of the Ticket class despite the fact there is no direct link between the two. This

does however mean that the system class could end up containing too much specific detail making it

less reusable. Assigning the system class “FilmForYou” as the creator is a more appropriate solution

than the one outlined below.

The sequence diagram in figure 8 demonstrates a cascade pattern which in turn yields a sequence of

events resulting in a high degree of coupling. It means that most classes are dependant on each

other to send and receive messages resulting in less reusable classes. Applying the GRASP creator

pattern to the cascade sequence diagram, we can assign responsibility of creating an instance of

Ticket to an object of the Member class as it precedes it in the sequence diagram. The detriment of

placing responsibility here is that the creator class, in this case the Member object, doesn’t have the

required data available to initialise a new Ticket object. Ideally, the Session object would do this

once it has been determined that the capacity of the room the session is linked to has not been met

or exceeded.

b.
In designing sequence models, we might discover that it could be beneficial to have a direct link

between classes where one previously did not exist. Take the sequence diagram in figure 7 as an

example. The class model has no direct link between “FilmForYou” and “Ticket”, yet the sequence

diagram shows that one may be required so the class model will need to be updated. Another kind

of change might be that an additional class is needed to represent something that had not been

considered or required during the initial modelling. This new class would need to be added and

associations would need to be established before returning to finish the sequence diagram.

Matthew Mason| C6122243

Question 4

a.
One Central Class

Looking at the analysis diagram, the “FilmForYou” class would become the system class for current

iteration of the software system. This would mean that the “FilmForYou” class would be required to

understand a number of use case operations which could lead to the class becoming overloaded.

This would mean that no additional classes are required and there will be less to change regarding

links, but it limits the flexibility and makes changes difficult to maintain. The operation that would

need to implemented in the “FilmForYou” class would be as follows: memberBuysTickets(ticket :

Number, member : Member, session : Session). This would mean that the first messages sent from

the interface could be something equivalent to the following: memberBuysTickets(2, morning, jack).

Actor Class

For the scenario where an actor class is used to manage the use case, an extra class would not be

required as the initiator is the member for which a class of this type already exists within the system.

This means that additional operations would need to be understood by the class “Member”. This

solution would require a possible redesign of the analysis model as there is no direct link between

Member and Session and so other classes may be required to carry out additional operations such as

the “FilmForYou” class returning a list of all possible sessions before a ticket can be purchased.

Alternatively, an additional link could be used to connect “Member” and “Session” classes. The

operation that would need to be implemented in the “Member” class would be as follows:

memberBuysTicket(ticket : Number, session : Session) meaning the first message sent from the

interface could be: memberBuysTicket(1, evening).

Use Cases as Classes

This scenario would require a new class to be added to define each new use case. In this situation

the class could be called MemberBuysTicket and would have the operation run(ticket : Number,

session : Session, member : Member) which the use case class would be required to understand.

Therefor, the interface might send the message run(2, midday, frank) to the newly created object of

the use case class.

b

i.
Using external identifiers affects the design of the business model by strongly coupling the rest of

the system to the user interface. As each object already has its own identity, rather than using the

external identifies to force the system to identify specific objects, to it makes more sense to identify

an object based on its already existing identity. If identification is localised to the interface, the

business model only deals with business objects and is insulated from alterations to how object

identification is performed.

ii.
A type of operation where using external data is the only option is during a situation where object

creation is required such as creating and recording information about a new guest or reservation in a

hotel software system. The external data can then be assigned to variables of the newly created

object and any identification for the new object can be achieved by using the objects identity.

Matthew Mason| C6122243

Question 5

a.

i.
There are three different states that the Session object can be in: The first is when the session is

created and no tickets have been sold, the second is where one or more tickets have been sold but

the number of tickets sold is less than the room capacity and the final state is where the tickets sold

is equal to the capacity, i.e. the session is sold out.

ii.

Figure 9: A state machine showing the life of a Session object

iii.
The information that would need to be added to the analysis diagram is a way to manage refunds

and cancellations. A new class could be added to represent and manage the refunding of tickets for

each member and weather they paid or used a free ticket, it would also need to manage refunds of

tickets for those customers who are not members and it would also need to be able to handle a way

to refund multiple customers in a single instance should a session need to be cancelled.

iv.
Once the session time has passed, there are several different decisions that could be made regarding

the object’s life history. The first is that session object and its links are destroyed and broken after a

set period, for example, after the length of the films run-time. This would allow anyone who is

running late to still purchase tickets for it, even if they miss a portion of the film and providing

capacity hasn’t been reached. The second option would be to allow the object to stay on the system

for a longer period of time, for example, three months and then be removed from the system. The

reason for this being that information pertaining to the film’s popularity might be required by box

office charts at set periods, of which the number of attendees and other information may need to be

passed on. It also means that any complaints or issues regarding a specific session can be dealt with

by finding the relevant session information on the system.

Matthew Mason| C6122243

b.
A namespace is a unique identifier for a package which contains groups of different classes or even

more packages. This partitioning helps with being able to manage the size and complexity of a

software system by allowing different teams to work on different sections of the software

simultaneously, for example one team could work on a section of the software that deals with

customer details and another team could work on the section that deals with accounts which could

then be decomposed further into another team working on an accounts payable package that lies

within the accounts package. It also assists with information hiding and reuse becomes possible in

certain areas. Packages could be redistributed or sold as a component to slot into another piece of

software without the need to understand the details of how the classes and methods defined within

that package work.

